Skip to main content
Skip to main menu

Slideshow

"Exploring microbial phenotypic diversity with single-cell RNA sequencing

Dr. Anna Kuchina
Dr. Anna Kuchina
Department of Electrical & Computer Engineering
University of Washington
Online via Zoom
Special Information:
Please contact Nancy Perkins at nancydh@uga.edu for Zoom link and passcode
Type of Event:
Department Seminars

Abstract:

Bacterial gene expression is highly heterogeneous even in isogenic bacteria grown in the same conditions; bacteria differentiate into subpopulations that may assume different roles for the survival of community. Population-level gene expression measurements are insufficient to resolve such phenotypic states which have been only discovered through single-cell methods. Using quantitative single-cell time-lapse microscopy, we discovered a novel microbial gene regulatory strategy in the model organism Bacillus subtilis accomplished through chromosomal arrangement of key genes regulating the heterogeneous sporulation cell fate. Methods such as fluorescence microscopy, however, are typically based on reporters allowing to measure only a limited set of genes at a time and requiring tractable model organisms. To address these limitations, I developed microSPLiT, a scalable single-cell RNA sequencing method tailored for bacteria. MicroSPLiT revealed a plethora of gene expression states in >25,000 single B. subtilis cells, including rare and unexpected cell states that remained hidden at a population level. With high scalability and resolution, microSPLiT is an emergent technology for single-cell gene expression studies of complex natural and engineered microbial communities.

Support Microbiology at UGA

The Department of Microbiology appreciates your financial support. Your gift is important to us and helps support critical opportunities for students and faculty alike, including lectures, travel support, and any number of educational events that augment the classroom experience. Click to read more

Every dollar contributed to the department has a direct impact on our students and faculty.