Skip to main content
Skip to main menu


Dr. Courtney Ellison receives the Damon Runyon-Dale F. Frey Award for Breakthrough Scientists

Monday, January 30, 2023 - 11:30am
Dr. Courtney Ellison

Damon Runyon Cancer Research Foundation awards over $4.3M to top young scientists


The Damon Runyon Cancer Research Foundation has announced its newest class of Damon Runyon Fellows, 14 exceptional postdoctoral scientists conducting basic and translational cancer research in the laboratories of leading senior investigators. The prestigious, four-year Fellowship encourages the nation’s most promising young scientists to pursue careers in cancer research by providing them with independent funding ($260,000 total) to investigate cancer causes, mechanisms, therapies, and prevention.  

The Foundation has also named seven new recipients of the Damon Runyon-Dale F. Frey Award for Breakthrough Scientists. This award recognizes Damon Runyon Fellows who have exceeded the Foundation’s highest expectations and are most likely to make paradigm-shifting breakthroughs that transform the way we prevent, diagnose, and treat cancer. To catapult their research careers—and their impact—Damon Runyon makes an additional investment of $100,000 in these exceptional individuals. 

“The Dale Frey Award gives me a big head start as I transition to an independent career,” said Xin Zhou, PhD, a 2022 Awardee and current Assistant Professor at Harvard Medical School. “The award will help my lab to jump-start some of our most adventurous projects and will surely facilitate the transformation of these ideas into reality.”   

Learn about the new Fellows and Breakthrough Scientists below. 

2023 Recipients of the Damon Runyon-Dale F. Frey Award for Breakthrough Scientists 

Courtney Ellison, PhD, University of Georgia, Athens 

"The regulation and function of type IV pili in Acinetobacter biofilm formation" 

Dr. Ellison is investigating how single bacterial cells join together to form complex, multicellular structures called biofilms. Biofilms protect bacterial cells from antibiotics and antimicrobial agents, making them difficult to eliminate. Some biofilm-forming species may cause certain cancers, and biofilms of infectious bacteria threaten immunocompromised patients such as those undergoing chemotherapy. Dr. Ellison focuses on bacterial appendages called type IV pili that play a crucial role in biofilm formation. Understanding the role of pili and their contribution to biofilm progression may lead to novel therapies to eliminate biofilms. 

View original news release here.


Support Microbiology at UGA

The Department of Microbiology appreciates your financial support. Your gift is important to us and helps support critical opportunities for students and faculty alike, including lectures, travel support, and any number of educational events that augment the classroom experience. Click to read more

Every dollar contributed to the department has a direct impact on our students and faculty.